SS 2007 » Optimierung bei partiellen Differentialgleichungen
Prof. Dr. Ulbrich

ÜbersichtÜbungenLösungenSkript

Veranstalter

Name Raum Tel.
Prof. Dr. Stefan UlbrichS4|10 1232487

 

Inhalt

In vielen praxisrelevanten Optimierungsproblemen treten partielle Differentialgleichungen als Nebenbedinungen auf. Typische Beispiele sind Optimalsteuerungsprobleme für Erwärmungs-, Wellenausbreitungs- oder Strömungsprobleme, Formoptimierungsprobleme von mechanischen oder elektrischen Bauteilen und in der Srömungsdynamik, die optimale Planung medizinischer Strahlentherapien und die Bewertung amerikanischer Finanzoptionen. Bereits die Lösung der als Nebenbedingung auftretenden partiellen Differentialgleichung ist rechenaufwendig. In den letzten Jahren wurden daher hocheffiziente Optimierungsverfahren entwickelt, die Optimierungsprobleme mit partiellen Differentialgleichungen in einem Rechenaufwand lösen können, der nur wenigen Lösungen der zugrundeliegenden partiellen Differentialgleichung entspricht.

Die Vorlesung gibt eine allgemeinverständliche Einführung in die Theorie und numerische Behandlung von Optimierungsproblemen mit partiellen Differentialgleichungen.

 

Aktuelles

Sabine Bartsch
Meike Mühlhäußer
Bettina Philipp

Sprechzeiten:
Mo13:30-15:30
Mi, Do10:30-12:30

studienbuero[at]mathematik.tu-darmstadt.de

Dr. Benjamin Seyfferth

Sprechzeiten:
Mo13:30-15:00
Do10:30-12:00

studienberatung[at]mathematik.tu-darmstadt.de

 

 

A A A | Print Drucken | Impressum Impressum | Contact Kontakt
    zum Seitenanfangzum Seitenanfang