Prof. Dr. Karl H. Hofmann

Office: S2|15 451
Phone: 06151 / 16-22465
Fax: 06151 / 16-22470
Email: hofmann [at] mathematik.tu-darmstadt.de


Vita (undefinedpdf)


Editorial Work

Deputy Managing Editor: Journal of Lie Theory
Honorary Editor: Semigroup Forum
Editor: Research and Exposition in Mathematics, Heldermann Verlag
 


Recent Books

  • Gerhard Betsch, Karl H. Hofmann (eds.)
    Hellmuth Kneser: Gesammelte Abhandlungen
    Verlag Walter de Gruyter, Berlin, 2005, xvi+923 pages
    Flyer: pdf

  • Gerhard Gierz, Karl H. Hofmann, Klaus Keimel, Jimmie D. Lawson, Michael W. Mislove, and Dana S. Scott
    Continuous Lattices and Domains
    Encyclopedia of Mathematics and its Applications 93
    Cambridge University Press, 2003, xxxvi+591 pages
  • Karl H. Hofmann
    Analysis I
    An Introduction to Mathematics via Analysis
    in English and German
    Heldermann Verlag, 2000, xx+398 pages
  • Karl H. Hofmann, Sidney A. Morris
    The Structure of Compact Groups
    A Primer for the Student - A Handbook for the Expert.
    de Gruyter Studies in Mathematics 25, Berlin,
    Third Edition 2013, Revised and Augmented, xxii + 924pp.
    Flyer: pdf
    Table of contents: pdf
    Preface: pdf
  • Karl H. Hofmann, Sidney A. Morris
    The Lie Theory of Connected Pro-Lie Groups
    A Structure Theory for Pro-Lie Algebras, Pro-Lie Groups and Connected Locally Compact Groups
    EMS Publishing House, Zürich, 2007, xvi+678 pages.
    Flyer: pdf
    Reviews: Mathematical Reviews (pdf), Zentralblatt MATH (pdf).

 


Recent Publications

  • Oskar Braun, K. H., and Linus Kramer,
    Automatic Continuity of Algebraic Homomorphisms between locally compact groups,
    33 pp., in preparation
  • Wolfgang Herfort, K. H., and Francesco Russo,
    A study in Locally Compact Groups—Chabauty space, Sylow Theory, the Schur Zassenhaus formalism, the Prime Graph for Near Abelian Groups,
    to appear
  • Hatem Hamrouni and K. H.,
    Locally compact groups approximable by subgroups ismorphic to Z,
    26 pp., to appear in Top. Appl.
  • Wolfgang Herfort, K. H.,  and Francesco Russo,
    Near abelian locally compact groups,
    Monograph in preparation, 197pp.
  • Hofmann, K. H., and J. R. Martin,
    Covering Space Semigroups and Retracts of Compact Lie Groups
    J. Group Theory (2016), to appear
  • Hofmann, K. H., and S. A. Morris,
    Pro-Lie Groups: A Survey with Open Problems,
    Axioms 4 (2015), 294-312.
  • Salvador Hernández, Karl H. Hofmann, and Sidney A. Morris,
    Nonmeasurable  subgroups of compact groups,
    J. of Group Theory (2015), to appear, 12pp.
  • Hofmann, K. H. and George A. Willis,
    Continuity Characterizing Totally Disconnected Locally Compacted Groups,
    J. of Lie Theory 25 (2015), 1-7
  • Hofmann, K. H., and John R. Martin,
    Möbius Manifolds, Monoids, and Retracts of Topological Groups,
    Semigroup Forum 90 (2014), 301-361. 
  • Hofmann, K. H., and John R. Martin,
    Retracts of Topological Groups and Compact Monoids,
    Topology Proceedings 43 (2014), 57-67.
    PDF (for subsribers)
  • Hofmann, K. H. and L. Kramer,
    Transitive actions of locally compact groups on locally contractible spaces,
    J. reine angew. Math. 702 (2015), 227-243.
    doi:10.1515/crelle-2013-0036
    and Erratum, J. Reine Angew. Math. 702 (2015), 245-246.
  • Hofmann, K. H. and Francesco G. Russo,
    Near abelian profinite groups,
    Forum Mathematicum 27 (2015), 647-698. 
  • Hofmann, K. H., and Francesco G. Russo,
    The probability that xm and yn commute in a compact group, 
    Bulletin of the Austral. Math. Soc. 87 (2012), 503-513. 
    doi:10.1017/S000497271200057
  • Hofmann, K. H., and Francesco G. Russo, 
    The probability that x and y commute in a compact group,
    Math. Proc. of the Cambridge Phil Soc. 153 (2012), 557-571,
    doi:10.1017/S0305004112000308
  • Hofmann, K. H., Mislove, M. W.,
    Compact Affine Monoids, Harmonic Analysis, and Information Theory,
    Amer. Math. Soc. Symposia in Applied Math., 71, 2012, 125-182
  • Hernández, S., K. H. Hofmann, and S. A. Morris,
    The weights of closed subgroups of a locally compact group,
    J. of Group Theory 15 (2014), 613-630.
  • Hofmann, K. H., and J. R. Martin,
    Topological Left-Loops,
    Topology Proceedings 39 (2012), 185-194,
    PDF (for subscribers)
  • Hofmann, K. H. and Morris, S. A.,
    Compact Homeomorphism Groups are Profinite,
    Topology and its Applications 9 (2012), 2453–2462
    doi:10.1016/j.topol.2011.09.050
  • Hofmann, K. H., Morris, S. A.,
    The structure of almost connected pro-Lie groups, 
    J. of Lie Theory 21 (2011), 347-383,
    PDF (for subscribers)
  • Hofmann, K. H.,
    The Dauns-Hofmann Theorem revisited,
    J. of Algebra and its Applications 10 (2011), 29-37,
    doi:10.1142/S0219498811004409
  • Hofmann, K. H., and Morris, S. A.,
    Local Splitting of Locally Compact Groups and Pro-Lie Groups,
    J. of Group Theory 14 (2011), 931-935,
    doi:10.1515/jgt.2011.090

 


Art, Essays and Mathematics

Cover of the AMS Notices
October 2010


Various Posters

A collection of various posters

Posters for Lectures in the Mathematical Colloquium

A collection of some older Colloquium posters has been published as a book:

Karl H. Hofmann
Poster Cartoons 1983-1998 - Plakate aus 15 Jahren
TU Darmstadt University Press, 1998 xxii+128 pp.


Various Essays since 2001

 

 


Cover of the AMS Notices
October 2006
Cover of the IEEE Signal
Processing Magazine July 2007

 

 

Cover of the AMS Notices
October 2011
Cover of "MU - Der Mathematikunterricht"
December 2015

 

 


Books Illustrated

  • Borwein, Jonathan and Keith Devlin
    The Computer as Crucible - An Introduction to Experimental Mathematics
    A. K. Peters, Ltd. Wellesley, Massachusetts, 2009, xi+158 pp.,ISBN 978-1-56881-343-1
    18 Illustrations, Cover and Backcover designs.

  • Leith Hathout
    Crimes And Mathdemeanors
    A. K. Peters Ltd
    Paperback Edition 2007, ISBN 1-56881-260-4, 150 pp.

  • M. Aigner and G. M. Ziegler
    Proofs from the Book
    Springer-Verlag Berlin etc., 1998, viii+199pp.
    Second Edition 2001, viii+215 pp.
    German Translation 2002: Das BUCH der Beweise, 2002 viii+247 pp.
    Japanese Translation, 2002, xiii+314 pp.
    Third Edition 2003, viii+239 pp.
    Turkish Edition 2009, 263 pp.
    Fourth Edition 2009, xiii+274 pp.
    Fifth Edition 2014, xiii+308 pp.

  • I. Bajo and E. Sanmartin, Eds.
    Recent Advances in Lie Theory
    R&E in Mathematics 25, 2002, xiii+398 pp.
    Illustrationen: 1, 262, 263, 393.

  • Hans Magnus Enzensberger
    Zugbrücke außer Betrieb / Drawbridge up
    Die Mathematik im Jenseits der Kultur / A Cultural Anathema
    A. K. Peters, Natick, Massachusetts, USA, 1999, 48 pp.
    Hardcopy Edition 2001, ISBN 1-56881-156-X, 48 pp.
    Japanese Edition 2003, ISBN 4-535-78351-9, 75 pp.

 


Australian Pen and Watercolor Diaries


Address

Fachbereich Mathematik
Technische Universität Darmstadt

Schloßgartenstr. 7
64289 Darmstadt

Germany

 

Office

Office: S2|15 K414
undefinedalgebra@mathematik...

undefinedKarolin Berghaus
 +49 6151 / 16-22460
undefinedUte Fahrholz
 +49 6151 / 16-22461

A A A | Print Drucken | Impressum Impressum | Contact Kontakt
    zum Seitenanfangzum Seitenanfang