Preprints

Detailansicht

Nummer 2715
Autor Roch, Steffen
Silbermann, Bernd
Titel Toeplitz and Hankel algebras - axiomatic and asymptotic aspects
Upload 7.3.2017
MSC 47B35, 47L80
Schlüsselwörter Toeplitz-like operators, abstract Toeplitz and Hankel operators, Toeplitz algebras, quasicommutator ideals

Abstract:
In 1983, the authors introduced a Banach algebra of - as they called them - Toeplitz-like operators. This algebra is defined in an axiomatic way; its elements are distinguished by the existence of four related strong limits. The algebra is in the intersection of Barria and Halmos' asymptotic Toeplitz operators and of Feintuch's asymptotic Hankel operators. In the present paper, we start with repeating and extending this approach and introduce Toeplitz and Hankel operators in an abstract and axiomatic manner. In particular, we will see that our abstract Toeplitz operators can be characterized both as shift invariant operators and as compressions. Then we show that the classical Toeplitz and Hankel operators on the spaces $H^p({\mathbb T})$, $l^p({\mathbb Z}_+)$, and $L^p({\mathbb R}_+)$ are concrete realizations of our abstract Toeplitz operators. Finally we generalize some results by Didas on derivations on Toeplitz and Hankel algebras to the axiomatic context.

Datei:
asympTH.pdf

Zurück zur Übersicht

Verantwortliche Autorin: Anke Meier-Dörnberg

 


Kontakt

Fachbereich Mathematik
Technische Universität Darmstadt

Schlossgartenstraße 7
64289 Darmstadt

A A A | Print Drucken | Impressum Impressum | Contact Kontakt
    zum Seitenanfangzum Seitenanfang