Preprints

Detailansicht

Nummer 2714
Autor Filonov, Nikolay
Shilkin, Timofey
Titel On the local boundedness of weak solutions to elliptic equations with divergence-free drifts
Upload 16.1.2017
Schlüsselwörter elliptic equations
divergence-free drift
stationary incompressible flow

Abstract:
In this paper we investigate the local boundedness of weak solutions to the equation $-\Delta u + b\cdot\nabla u=0$ describing the diffusion in a stationary incompressible flow. The corresponding theory is well-known in the case of the general (not necessary divergence-free) sufficiently smooth drift (namely, for $b\in L_n$, where $n$ is the dimension of the space). Our main interest is focused on the case of $b$ with limited regularity (namely, $b\in L_2$). In this case the structure assumption $\div b=0$ turns out to be crucial. In our paper (which is partly expository) we recall some known properties of weak solution in the case of the divergence-free drifts $b\in L_2$ and also establish some new results on the local boundedness of weak solutions.

Datei:
Filonov_Shilkin ell eq drift.pdf

Zurück zur Übersicht

Verantwortliche Autorin: Anke Meier-Dörnberg

 


Kontakt

Fachbereich Mathematik
Technische Universität Darmstadt

Schlossgartenstraße 7
64289 Darmstadt

A A A | Print Drucken | Impressum Impressum | Contact Kontakt
    zum Seitenanfangzum Seitenanfang