Recent Work

H. Egger, T. Kugler, and W. Wollner.
Numerical optimal control of instationary gas transport with control and state constraints.
TU Darmstadt, 11/2017. trr154-214.

H. Egger, C. Erath, and R. Schorr.
On the non-symmetric coupling method for parabolic-elliptic interface problems.
TU Darmstadt 11/2017. arXive:1711.08487

H. Egger, T. Kugler, B. Liljegren-Sailer, N. Marheineke, and V. Mehrmann.
On structure-preserving model reduction for damped wave propagation in transport networks
TU Darmstadt, 04/2017. arXiv:1704.03206

A. Böttcher and H. Egger.
Energy stable discretization of Allen-Cahn type problems modeling the motion of phase boundaries.
TU Darmstadt, 03/2017.arXiv:1703.02778

H. Egger.
A mixed variational discretization for non-isothermal compressible flow in pipelines.
TU Darmstadt, 11/2016.arXive:1611.03368

H. Egger and B. Radu.
Super-convergence and post-processing for mixed finite element approximations of the wave equation.
TU Darmstadt, 08/2016.arXive:1608.03818

H. Egger and Th. Kugler.
Uniform exponential stability of Galerkin approximations for damped wave systems.
TU Darmstadt, 11/2015. arXive:1511.08341

H. Egger.
Energy-norm error estimates for finite element discretization of parabolic problems
TU Darmstadt, 07/2015. arXive:1507.05183

H. Egger, K. Fellner, J.-F. Pietschmann, B. Q. Tang.
A finite element method for volume-surface reaction-diffusion systems.
TU Darmstadt, 06/2015. arXive:1511.00846.

Publications

2017

H. Egger.
A robust conservative mixed finite element method for isentropic compressible flow on pipe networks.
SISC 2017, accepted. arXive:1609.04988

H. Egger, J.-F. Pietschmann and M. Schlottbom.
On the uniqueness of nonlinear diffusion coefficients in the presence of lower order terms.
Inverse Problems 2017. arXiv:1703.07459

H. Egger and T. Kugler.
An asymptotic preserving mixed finite element method for wave propagation in pipelines
Proceedings of HYP 2016. arXiv:1701.04011

H. Egger and Thomas Kugler.
Damped wave systems on networks: Exponential stability and uniform approximations.
Numer. Math. 2017. arXive:1605.03066

H. Egger, T. Seitz and C. Tropea.
Enhancement of flow measurements using fluid-dynamic constraints.
Journal of Computational Physics, 2017. accepted. arXive:1512.08620

H. Egger, Thomas Kugler, and Nikolai Strogies.
Parameter identification in a semilinear hyperbolic system.
Inverse Problems, 2017.  arXive:1606.03580

2016

H. Egger and M. Schlottbom.
A class of Galerkin schemes for time-dependent radiative transfer
SIAM J. Numer. Anal. 54 (2016), 3577-3599. arXive:1512.01154

 

2015

F. Kretzschmar, S. Schnepp, H. Egger, F. Ahmadi, N. Nowak, V. Markel, and I. Tsukerman.
The power of Approximations: Finite Difference, Boundary Difference and Discontinuous Galerkin Methods: Nonreflecting Conditions and Non-Asymptotic Homogenization.
to appear in: Lecture Notes in Computer Science V. 9045, Springer, 2015.

H, Egger, F. Kretzschmar, S. Schnepp, and Th. Weiland.
A Space-Time Discontinuous Galerkin Trefftz Method for time dependent Maxwell's equation.
SIAM J. Sci. Comput. 37 ( 2015), B689-B711. arXiv:1412.2637

H. Egger, J.-F. Pietschmann, and M. Schlottbom.
Identification of chemotaxis models with volume filling.
SIAM J. Appl. Math. 75 (2015), pp. 275 - 288, 2015, 2015. arXiv:1404.7780

H. Egger, F. Kretzschmar, S. Schnepp, I. Tsukerman, and T. Weiland.
Transparent boundary conditions in a Discontinuous Galerkin Trefftz method.
Appl. Math. Comput. Volume 267 (2015), pp.42-55. arXiv:1410.1899

2014

H. Egger, J.-F. Pietschmann, and M. Schlottbom.
Identification of nonlinear heat conduction laws.
J. Inv. Ill-Posed Probl. 2014, accepted. arXiv:1404.2535

H. Egger and M. Schlottbom.
Diffusion asymptotics for linear transport with low regularity
Asymptotic Analysis 2014, accepted. arXiv:1309.6880.

Fritz Kretzschmar, Farzad Ahmadi, Nabil Nowak, Sascha M Schnepp, Igor Tsukerman, Herbert Egger and Thomas Weiland.
Trefftz absorbing boundary conditions in analytical, Discontinuous Galerkin and Finite difference form.
ICEAA 2014, 176-177.link.

H. Egger and M. Schlottbom.
Numerical methods for parameter identification in stationary radiative transfer.
Comput. Optim. Appl. 2014. DOI 10.1007/s10589-014-9657-9.arXiv:1311.0136

H. Egger, J.-F. Pietschmann, and Matthias Schlottbom.
Numerical identification of a nonlinear diffusion law via regularization in Hilbert scales.
Inverse Problems, Vol. 30 No. 2, 025004, 2014. arXiv:1308.6188

H. Egger, J.-F. Pietschmann, and Matthias Schlottbom.
Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem.
Inverse Problems, Vol. 30 No. 3, 035009, 2014. arXiv:1306.6026

H. Egger and M. Schlottbom.
Stationary radiative transfer with vanishing absorption
M3AS Vol. 24, 973-990, 2014.link.

2013

S. Arridge, H. Egger, and M. Schlottbom.
Preconditioning of complex symmetric linear systems with applications in optical tomography.
APNUM Vol. 74, 35-48, 2013. link

H. Egger and M. Schlottbom.
An Lp theory for stationary radiative transfer
Applicable Analysis 2013, doi, arXiv:1304.6504

S. Heinze, M. Joulaian, H. Egger, and A. Düster.
Efficient computation of cellular materials using the finite cell method
PAMM 204, 251-252. Publications

H. Egger, U. Rüde, and B. Wohlmuth.
Energy-corrected finite element methods with optimal convergence for corner singularities.
SIAM J. Numer. Anal., 52, 171–193. 2013. link.

2012

H. Egger and C. Waluga.
hp-Analysis of a Hybrid DG Method for Stokes Flow.
IMANUM 2012. doi: 10.1093/imanum/drs018

C. Waluga and H. Egger.
An Implementation of Hybrid Discontinuous Galerkin Methods in DUNE.
in: Advances in DUNE, A. Dedner, B. Flemisch, R. Klöfkorn, eds., pp 169-180, Springer, 2012. link

H. Egger and M. Schlottbom.
A Mixed Variational Framework for the Radiative Transfer Equation.
Math. Mod. Meth. Appl. Sci., 22(3), 2012, 1150014.

H. Egger, C. Waluga.
A hybrid mortar method for incompressible flow.
IJNAM 9 (2012), 793-812.

R Hausmann, C Kuppe, H Egger, et. al.
Electrical forces determine glomerular permeability.
J. Amer. Soc. Nephr. 21(12), 2053-2058.

2011

H. Egger, M. Schlottbom.
Efficient Reliable Image Reconstruction Schemes for Diffuse Optical Tomography.
Inv. Probl. Sci. Engrg. 19 (2011), 155-180.

H. Egger and C. Waluga.
A Hybrid Discontinuous Galerkin Method for Darcy-Stokes Problems.
in: Domain Decomposition Methods in Science and Engineering XX, 663-670, 2013.

M. Freiberger, H. Egger, M. Liebmann and H. Scharfetter.
High-performance image reconstruction in fluorescence tomography on desktop computers and graphics hardware.
Biomedical Optics Express 2 (2011), 3207-3222.

2010

H. Egger, M. Schlottbom.
Analysis and regularization of Problems in diffuse optical tomography.
SIAM J. Math. Anal. 42 (2010), 1934-1948.

H. Egger, M. Freiberger, M. Schlottbom.
On Forward and Inverse Models in Fluorescence Optical Tomography.
Inverse Problems and Imaging 4 (2010), 411-427.

M. Freiberger, H. Egger, H. Scharfetter.
Nonlinear Inversion in Fluorescence Optical Tomography.
IEEE Trans. Biomed. Eng. 57 (2010), 2723-2729.

H. Egger, M. Hanke, C. Schneider, J. Schöberl, S. Zaglmayr.
Adjoint sampling methods for electromagnetic scattering.

2005-2009

H. Egger, A. Leitao.
Nonlinear regularization methods for ill-posed problems with piecewise constant or strongly varying solutions.
Inverse Problems 25 (2009) 115014.

H. Egger, A. Leitao.
Efficient stable solutions of nonlinear elliptic Cauchy problems with piecewise constant solutions.
Advances in Applied Mathematics and Mechanics 1 (2009), 729-749.

H. Egger, Y. Heng, W. Marquardt, A. Mhamdi.
Efficient solution of a three-dimensional inverse heat conduction problem in pool boiling.
Inverse Problems 25 (2009), 095006.

H. Egger, J. Schöberl.
A Hybrid Mixed Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems.
IMA J. Num. Anal. (2009), doi: 10.1093/imanum/drn083.

H. Egger.
Regularization of inverse problems with large noise.
J. Phys.: Conf. Ser. 124 012022, 2008.

H. Egger.
Y-Scale Regularization.
SIAM J. Numer. Anal. 46 (2008), 419-436.

H. Egger.
Fast fully iterative Newton-type methods for inverse problems.
J. Inv. Ill-posed Problems 15 (2007), 257-276.

H. Egger.
Preconditioning CGNE-Iterations for Inverse Problems.
Numerical Linear Algebra with Applications 14 (2007), 183-196.

H. Egger, T. Hein and B. Hofmann.
On decoupling of volatility smile and term structure in inverse option pricing.
Inverse Problems 22 (2006), 1247-1259.

H. Egger.
Semiiterative Regularization in Hilbert scales.
SIAM J. Numer. Anal. 44 (2006), 66-81.

H. Egger and A. Neubauer.
Preconditioning Landweber iteration in Hilbert scales.
Numer. Math. 101 (2005), 643-662.

H. Egger, H. W. Engl, and M. V. Klibanov.
Global uniqueness and Hölder stability for recovering a nonlinear source term in a parabolic equation.
Inverse Problems 21 (2005), 271-290.

H. Egger and H. W. Engl.
Tikhonov regularization applied to the inverse problem of option pricing: Convergence analysis and rates.
Inverse Problems 21 (2005), 1027-1045.

H. Egger.
Recovering Volatility in the Black-Scholes Model.
In: I. Troch and F. Breitenecker, eds. Proceedings of the 4th MATHMOD Vienna, 2003.

Technical Reports

H. Egger.
On the Convergence of Modified Landweber Iteration for Nonlinear Inverse Problems.
Technical Report SFB-2010-017.

H. Egger.
A class of hybrid mortar finite element methods for interface problems with non-matching meshes.
Technical Report AICES-2009-2.

H. Egger, A. Leitao.
Stable solutions of nonlinear elliptic Cauchy problems in three dimensional domains.
Technical Report AICES-2008-6.

H. Egger.
Accelerated Newton-Landweber iterations for regularizing nonlinear inverse problems.
SFB-Report 2005-3, January 2005.

Theses

Diploma Thesis:
Identification of Volatility Smile in the Black Scholes Equation via Tikhonov Regularization.
Johannes Kepler University Linz, 2002.

Doctoral Thesis:
Preconditioning iterative regularization in Hilbert Scales.
Johannes Kepler University Linz, 2005.

A A A | Print Drucken | Impressum Impressum | Contact Kontakt
    zum Seitenanfangzum Seitenanfang