Publications - Christian Stinner

 

Journal articles

  • C. Engwer, C. Stinner, and C. Surulescu: On a structured multiscale model for acid-mediated tumor invasion: the effects of adhesion and proliferation. Mathematical Models and Methods in Applied Sciences 27, No. 7, 1355-1390 (2017).
  • R.G. Iagar, Ph. Laurençot, and C. Stinner: Instantaneous shrinking and single point extinction for viscous Hamilton-Jacobi equations with fast diffusion. Mathematische Annalen 368, No. 1-2, 65-109 (2017).
  • C. Stinner, C. Surulescu, and A. Uatay: Global existence for a go-or-grow multiscale model for tumor invasion with therapy. Mathematical Models and Methods in Applied Sciences 26, No. 11, 2163-2201 (2016).
  • G. Meral, C. Stinner, and C. Surulescu: A multiscale model for acid-mediated tumor invasion: therapy approaches. Journal of Coupled Systems and Multiscale Dynamics 3, No. 2, 135-142 (2015).
  • C. Stinner, C. Surulescu, and G. Meral: A multiscale model for pH-tactic invasion with time-varying carrying capacities. IMA Journal of Applied Mathematics 80, No. 5, 1300-1321 (2015).
  • T. Cieslak and C. Stinner: New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models. Journal of Differential Equations 258, No. 6, 2080-2113 (2015).
  • G. Meral, C. Stinner, and C. Surulescu: On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete and Continuous Dynamical Systems - Series B 20, No. 1, 189-213 (2015).
  • C. Stinner, C. Surulescu, and M. Winkler: Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion. SIAM Journal on Mathematical Analysis 46, No. 3, 1969-2007 (2014).
  • C. Stinner, J.I. Tello, and M. Winkler: Competitive exclusion in a two-species chemotaxis model. Journal of Mathematical Biology 68, No. 7, 1607-1626 (2014).
  • T. Cieslak and C. Stinner: Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2. Acta Applicandae Mathematicae 129, No. 1, 135-146 (2014).
  • T. Cieslak and C. Stinner:  Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions. Journal of Differential Equations 252, No. 10, 5832-5851 (2012).
  • Ph. Laurençot and C. Stinner: Convergence to separate variables solutions for a degenerate parabolic equation with gradient source. Journal of Dynamics and Differential Equations 24, No. 1, 29-49 (2012).
  • C. Stinner, J.I. Tello, and M. Winkler: Mathematical analysis of a model of chemotaxis arising from morphogenesis. Mathematical Methods in the Applied Sciences 35, No. 4, 445-465 (2012).
  • C. Stinner and M. Winkler: Global weak solutions in a chemotaxis system with large singular sensitivity. Nonlinear Analysis: Real World Applications 12, No. 6, 3727-3740 (2011).
  • C. Stinner: Rates of convergence to zero for a semilinear parabolic equation with a critical exponent. Nonlinear Analysis: Theory, Methods & Applications 74, No. 5, 1945-1959 (2011).
  • C. Stinner: The convergence rate for a semilinear parabolic equation with a critical exponent. Applied Mathematics Letters 24, No. 4, 454-459 (2011).
  • Ph. Laurençot and C. Stinner: Refined asymptotics for the infinite heat equation with homogeneous Dirichlet boundary conditions. Communications in Partial Differential Equations 36, No. 3, 532-546 (2011).
  • G. Barles, Ph. Laurençot, and C. Stinner: Convergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation. Asymptotic Analysis 67, No. 3-4, 229-250 (2010).
  • C. Stinner: Very slow convergence rates in a semilinear parabolic equation. Nonlinear Differential Equations and Applications 17, No. 2, 213-227 (2010).
  • C. Stinner: Convergence to steady states in a viscous Hamilton-Jacobi equation with degenerate diffusion. Journal of Differential Equations 248, No. 2, 209-228 (2010).
  • C. Stinner: Very slow convergence to zero for a supercritical semilinear parabolic equation. Advances in Differential Equations 14, No. 11-12, 1085-1106 (2009).
  • C. Stinner and M. Winkler: Finite time vs. infinite time gradient blow-up in a degenerate diffusion equation. Indiana University Mathematics Journal 57, No. 5, 2321-2354 (2008).
  • C. Stinner and M. Winkler: Boundedness vs. blow-up in a degenerate diffusion equation with gradient nonlinearity. Indiana University Mathematics Journal 56, No. 5, 2233-2264 (2007).

Habilitation thesis

C. Stinner: Qualitative behavior of solutions to parabolic equations with different types of diffusion. TU Kaiserslautern (2015). (pdf) 

PhD thesis

C. Stinner: Blow-up in a degenerate parabolic equation with gradient nonlinearity. RWTH Aachen (2008). (pdf)

Diploma thesis

C. Stinner: Degenerate diffusion equations with gradient terms. RWTH Aachen (2004). (pdf)

Kontakt

Technische Universität Darmstadt
Fachbereich Mathematik
AG Angewandte Analysis

Esther Bauer

Schloßgartenstr. 7
64289 Darmstadt
Raum S2|15 420

bauermathematik.tu-darmstadt.de
Tel.: +49 (0)6151 / 16-21484
Fax: +49 (0)6151 / 16-21483

A A A | Print Drucken | Impressum Impressum | Contact Kontakt
    zum Seitenanfangzum Seitenanfang